Comparison of Different Methods for Determination of Amino Acids Contents in Food and Feed

Y. Zhang and J.M. Sido (National Corn-to-Ethanol Research Center,, Edwardsville, IL) S.N. Daniels (Applied Biosystems, Framingham, MA) R. Dickerson and L. Reimann (Eurofins US in Des Moines, Des Moines, Iowa) H. Hewitson and T.E. Wheat (Waters Corporation, Milford, MA) L. Novotny (Olson Biochemistry Labs, South Dakota State University, Brookings SD) J. Reuther, S. Ruiz and F. Sudradjat (Eurofins Central Analytical Laboratories, Metairie, Louisiana) K. Sjogren (Minnesota Valley Testing Laboratories, New Ulm, MN)

Analytical Methods Used

- HPLC ion exchange with ninhydrin post-column derivatization (3 labs)
- HPLC ion exchange with o-phthaldialdehyde post-column derivatization (1 lab)
- HPLC pre-column derivatization (ACCQ-Fluor Reagent Kit) with FLD (1 lab)
- UPLC pre-column derivatization (6-aminoquinolyl-Nhydroxysuccinimidyl carbamate) (2 labs)
- LC/MS/MS pre-column derivatization (iTRAQ[™] reagent, an amine reactive compound) (2 labs).

Amino Acid Round Robin Design

• 15 amino acids:

Alanine, arginine, aspartic acid, glycine, glutamic acid, histidine, isoleucine, leucine, lysine, phenylalanine, proline, serine, threonine, tyrosine and valine

Seven samples:

1 amino acid hydrolysate standard (NIST)

1 peanut butter (NIST)

5 DDGS hydrolysates (triplicate and 2 NIST-STD spiked hydrolysates)

• Performance Criteria:

Precision (DDGS hydrolysate triplicate)

Accuracy (amino acid hydrolysate standard from NIST, food hydrolysate from NIST, DDGS hydrolysate spiked with NIST standard)

Amino Acid Round Robin Design (AOCS)

15 amino acids:

Alanine, arginine, aspartic acid, glycine, glutamic acid, histidine, isoleucine, leucine, lysine, phenylalanine, proline, serine, threonine, tyrosine and valine **Five samples:**

soybean, soybean meal, swine diet, poultry diet and BSA

Test Methods:

GC/MS/MS (1 lab)

UPLC – pre-column derivatization (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) (2 labs)

Test Scheme:

Test each sample three times a week in 5 consecutive weeks

Data Evaluation

- Variation by individual methods
- Variation by individual amino acids
- Variation by individual labs
- Variation by sample matrix

Amino Acid Round Robin Studies

Precision

Precision (RSD, %)

(Based on DDGS hydrolysate triplicate)

Precision (RSD, %) (Based on DDGS hydrolysate triplicate)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC Post–Column Deriv.	1.9* (0.3)	2.4 (0.7)	1.1 (0.5)	1.8 (0.7)
UPLC Pre-Column Deriv.	3.5 (1.3)	0.6 (0.1)		2.1 (2.1)
LC/MS/MS Pre-Column Deriv.	2.1 (1.4)	4.9 (1.2)		3.5 (2.0)
HPLC Pre-Column Deriv.	8			8

Precision (RSD, %)

(Soy bean sample, tested in 5-week period, mean of 15 data points)

Precision (RSD, %)

(Soy bean sample, tested in 5-week period, mean of 15 data points)

Methods	Lab 1	Lab 2	Mean (of all labs)
GC-MS-MS	1.6* (0.5)		1.6 (0.5)
UPLC Pre-Column Deriv.	1.6 (0.9)	0.8 (0.7)	1.2 (0.5)

Summary on Precision

- Precision is method dependent: HPLC postcolumn derivatization has the best performance (RSD < 2%) and HPLC precolumn derivatization has the highest RSD.
- Most methods investigated show satisfying precision for within batch and between batch runs.
- More data points needed to produce statistically sound conclusion.

Amino Acid Round Robin Study

Accuracy

Accuracy (Recovery, %) (Based on NIST amino acid hydrolysate standard)

Accuracy (Recovery, %)

(Based on NIST amino acid hydrolysate standard)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC	98*	104	105	102
Post–Column Deriv.	(8)	(8)	(8)	(3)
UPLC	96	105		100
Pre-Column Deriv.	(9)	(7)		(6)
LC/MS/MS	93	107		100
Pre-Column Deriv.	(5)	(8)		(10)
HPLC Pre-Column Deriv.	105			105

Amino Acid Contents in DDGS Hydrolysate

Total Amino Acid Contents in DDGS Hydrolysate (ug / ml)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC Post–Column	247*	282	256	261
Deriv.	(5)	(7)	(3)	(18)
UPLC Bro Column	216	289		253
Deriv.	(8)	(2)		(52)
LC/MS/MS Pre-Column	253	250		252
Deriv.	(5)	(12)		(2)
HPLC Pre-Column Deriv.	266			266

* Mean of triplicate

Accuracy (Recovery, %) (DDGS hydrolysate spiked I)

Accuracy (Recovery, %)

(DDGS hydrolysate spiked I)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC	105*	94	102	101
Post–Column Deriv.	(5)	(8)	(7)	(6)
UPLC	115	99		107
Pre-Column Deriv.	(4)	(6)		(11)
LC/MS/MS	102	98		100
Pre-Column Deriv.	(3)	(13)		(2)
HPLC Pre-Column Deriv.	114			114

Accuracy (Recovery, %) (DDGS hydrolysate spiked II)

Accuracy (Recovery, %) (DDGS hydrolysate spiked II)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC	103*	100	100	101
Post–Column Deriv.	(5)	(8)	(8)	(2)
UPLC	106	97		101
Pre-Column Deriv.	(5)	(8)		(6)
LC/MS/MS	102	98		100
Pre-Column Deriv.	(6)	(17)		(3)
HPLC Pre-Column Deriv.	93			93

Summary on Accuracy

(in testing hydrolysate)

- The three methods: HPLC post-column, UPLC and LC/MS/MS give similar performance, which have 100% recovery for most amino acids, with the HPLC post-column method being the most consistent.
- Except for LC/MS/MS, all the other methods have higher than 120% recovery for histidine.
- More data points needed to produce statistically sound conclusion.

Amino Acid Round Robin Studies

(Based on food and feed samples)

Accuracy (Recovery, %) (Peanut Butter Standard, NIST)

Record of Accuracy

(Recovery, %, based on NIST Peanut Butter)

Methods	Lab 1	Lab 2	Lab 3	Mean (of all labs)
HPLC	105 *	114	106	108
Post–Column Deriv.	(8)	(17)	(12)	(5)
UPLC	98	120		98
Pre-Column Deriv.	(8)	(7)		(16)
LC/MS/MS	101	99		100
Pre-Column Deriv.	(9)	(6)		(1)
HPLC Pre-Column Deriv.	102			102

Amino Acid Contents in Soybean

Total Amino Acid Contents in Soy Bean (wt/wt, %, as-rec.)

Methods	Lab 1	Lab 2	Mean (of all labs)
GC-MS-MS	45.6* (0.5)		45.6
UPLC Pre-Column Deriv.	41.7 (0.5)	45.6 (0.2)	43.6 (2.7)

UNITED SOYBEAN BOARD Making Your Checkoff Pay Off.

* Mean of 15 runs

Comparison on other Factors

Methods	Run Time	Price
	(minutes)	(\$)
HPLC Post_Column Deriv		
	60	180
UPLC Pre-Column Deriv.	10	100
LC/MS/MS Pre-Column Deriv.	24	200
HPLC Pre-Column Deriv.	40	250

Summary on Accuracy in testing food and feed

- The three methods: HPLC post-column, UPLC and LC/MS/MS give similar performance, which have 100% recovery for most amino acids, with the HPLC post-column method being the most consistent.
- More data points needed to produce statistically sound conclusion.