

Canadian Food Ager Inspection Agency d'ins

Agence canadienne d'inspection des aliments

Canadian Food Inspection Agency

Our vision:

To excel as a science-based regulator, trusted and respected by Canadians and the international community.

Our mission:

Dedicated to safeguarding food, animals and plants, which enhances the health and well-being of Canada's people, environment and economy. Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS

Geneviève Grenier, Melanie Titley & Lise-Anne Prescott

AAFCO Laboratory Methods and Services Committee meeting 2016-01-18

- Animal Feed Division of CFIA identified a high priority need for the determination of three organic arsenicals (arsanilic acid, roxarsone and nitarsone) at residue levels in animal feed
- These are withdrawal drugs and are priority food contaminants
- Current test methods are at guarantee levels greater than 10% minimum use rate
- Therefore, current methods not well suited for residue or traceback testing
- Requested feed residue LOQ of 1 mg/kg for all three organic arsenicals

- UHPLC-PDA Challenges
 - Extract were very dirty
 - Tried sample clean-up using Oasis MAX SPE
 - Still very dirty
- HPLC Challenges
 - Compounds elute too easily
 - Analytical column must : retain and separate compounds, and give good peak shape
 - Analytical column : Phenomenex Onyx Monolithic C18 100 X
 3.0mm

Background

- LC/MS/MS method (positive mode)
 - Column: Phenomenex Onyx Monolithic C18 100 X 3.0mm
 - Linearity problems with Internal Standard (IS)
 - Internal standard 4-hydroxyphenylarsonic acid
 - Peak area of the internal standard increased with increasing analyte concentration

Cause

 4-hydroxyphenyl arsanic acid co-elute with Arsanilic acid and have similar m/z

New method - summary

- Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. Peng et. al., Journal of Chromatography A, 1370 (2014) 40-49
- Analytes: 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), parsanilic acid, 4-nitrophenylarsonic acid (Nitarsone)
- Internal standard: 4-hydroxyphenylarsonic
- Extraction: $2\% K_2 HPO_4$ in MeOH/H₂O (10+90)
- Column: Hamilton PRP-X110S anion exchange column (7 µm x 100 mm x 2.1 mm)
- Mobile phase: 80mM Ammonium Bicarbonate in MeOH/H₂O (10+90), pH 10.0
- Detection: API 5000 LC/MS/MS, negative ionization

Method Development - Infusion

LC-MS/MS transitions

• "a" used for quantitation and "b" used for confirmation

Name	Q1 (m/z)	Q3 (M/z)
Arsanilic acid a	215.90	106.90
Arsanilic acid b	215.90	122.80
Roxarsone a	262.00	106.90
Roxarsone b	262.00	122.80
Nitarsone a	246.00	106.90
Nitarsone b	246.00	122.80
4- hydroxyphenyl arsonic acid (IS)	216.90	106.90

Optimization of MS/MS Parameters

CUR	30.00
GS 1	60.00
GS 2	70.00
lhe	ON
CAD	9.00
IS	-3000
TEM	750.00
DP	-65.00
EP	-10.00
Polarity	negative

Method Development – Mobile phase

Mobile Phase A – 30 mM Ammonium bicarbonate

• Mobile Phase A – 60 mM Ammonium bicarbonate

Mobile Phase A – 80 mM Ammonium bicarbonate Shorter RTs and sharper peaks!

Canada | 10

Mobile Phase A – pH 8.07 (60 mM Ammonium Bicarbonate)

Mobile Phase A – pH 9.50 (60 mM Ammonium Bicarbonate)

Mobile Phase A – pH 10.50 (60 mM Ammonium Bicarbonate)

- Mobile Phase A = 80 mM Ammonium Bicarbonate in MeOH/H₂O (10+90), pH adjusted to 10.0
- Mobile Phase B = $MeOH/H_2O(10+90)$, column wash solution
- Column: Hamilton PRP-X110S anion exchange column (7µm x 100mm x 2.1mm)
- Injection volume = $25 \ \mu L$
- Flow rate = 1000 μ L/min
- Run time = $4 \min$

- Extraction solution:
 - #1 MeOH/1% acetic acid (95+5): poor extraction efficiency for "real" sample (vs. spiked sample).

 $#2 - 2\% K_2 HPO_4$ (aqueous)

#3 – 2% K_2 HPO₄ in MeOH/H₂O (10+90). MeOH improves extraction efficiency for arsanilic acid.

Shaking time (tried 15 min, 30 min, 1 hr, 3 hrs, overnight)

Extraction

- 20g sample
- 100mL of % K₂HPO₄ in MeOH/H₂O (10+90)
- Shake 30 min
- Centrifuge ~ 30 mL of extract for 10 min
- Filter supernatant through autovial syringeless filters
- Dilute 50uL of filtered solution with 5 mL MeOH/H₂O (10+90)

Blank Poultry grower (with IS)

Spiked Poultry grower at 2.5 ppm

Method Validation

Performance criteria evaluated

- Ruggedness
- Matrix effects
- LOD/LOQ
- Analytical Range
- Linearity
- Analyte stability
- Accuracy
- Repeatability
- Measurement uncertainty

Method Validation – matrix effects

 Even though we used an internal standard, matrix effects were observed. Matrix fortified standards used to compensate for the matrix effects.

Method Validation - matrices

- Pig grower
- Lamb grower
- Horse premix
- Dairy supplement
- Poultry grower
- Duck

- Lactating swine
- Beef ration
- Turkey finisher
- Dairy premix
- DDG
- Horse ration

Method Validation – LOD and LOQ

- LOD and LOQ was evaluated for each transition in different types of feed and premixes
- 12 blank matrices spiked at 0.5 ppm

Transition name	LOD (ppm)	LOQ (ppm)
Arsanilic acid a	0.13	0.37
Arsanilic acid b	0.12	0.33
Roxarsone a	0.10	0.27
Roxarsone b	0.09	0.25
Nitarsone a	0.10	0.29
Nitarsone b	0.12	0.32

Method Validation – Linearity and Analytical Range

- 5 mixed working standards with concentration range from 0.5 to 50 ng/mL
- Sample dilution is 1 g/500 mL = Range of 0.25 ppm to 25 ppm
- Coefficient of correlation \geq 0.999 for all analytes

Method Validation – Linearity and Analytical Range

Analyte Name: Internal Standard:	Nitarsone a 4-HPA acid a	ı			
Data File Acquisition Date Acquisition Method Project	ORGANO15-12-2 12/22/2015 3:20:4 Organoarsenicals Organo\2015	201.wiff Result Table 7 PM Algorithm Used dam Instrument Name		ORGANOARS15-12-2201.rdb IntelliQuan API 5000	
Regression Equation:	y = 5.08 x +	0.0467 (r = 0.9999)			
Expected Concentration	Number of Values	Mean Calculated Concentration	% Accuracy	Std. Deviation	%CV
0.515	1	0.49	95.4	N/A	N/A

2.06 2.18 105.7 N/A 1 N/A 5.15 1 5.06 98.3 N/A N/A 25.80 1 26.08 101.1 N/A N/A 51.50 1 51.17 99.4 N/A N/A

ORGANOARS15-12-2201.rdb (Nitarsone a): "Linear" Regression (*1 / x" weighting): y = 5.08 x + 0.0467 (r = 0.9999)

Method Validation – **Accuracy and Repeatability**

Samples spiked at 0.5 ppm, 2.5 ppm and 20 ppm.

Arsanilic Acid a

Matrix	Recovery mean (%)	CV (%)
16% Poultry grower	95.1	4.7
Duck	92.5	6.6
14% Horse Ration	90.1	4.2
DDG	84.2	7.3
Pig grower	98.1	6.6
Lamb grower	82.1	7.3
Horse premix	75.4	6.3
Dairy supplement	98.8	4.5

Method Validation – Accuracy and Repeatability

Roxarsone a

Matrix	Recovery mean (%)	CV (%)
16% Poultry grower	99.3	3.8
Duck	94.3	2.6
14% Horse Ration	95.0	3.7
DDG	108.5	5.4
Pig grower	103.0	4.7
Lamb grower	107.5	9.9
Horse premix	93.6	4.1
Dairy supplement	103.0	4.1

Method Validation – Accuracy and Repeatability

Nitarsone a

Matrix	Recovery mean (%)	CV (%)
16% Poultry grower	98.5	4.1
Duck	93.8	2.2
14% Horse Ration	93.9	5.4
DDG	116.4	4.9
Pig grower	108.7	5.8
Lamb grower	107.2	9.0
Horse premix	98.4	3.3
Dairy supplement	103.1	4.0

- All analytes have recovery means between 75 120%
- Coefficients of variation all < 10%

