

Mycotoxins:

Homogeneity and Stability

Homogeneity Data			
Analyte Name	Aflatoxin B1 (ppb)		
Sample #	Rep. 1 Rep. 2		
1	42.1	51.9	
2	47.2	55.1	
3	54.8	58.3	
4	46.6	53.0	
5	45.6	50.9	
6	58.9	53.9	
7	49.7	55.3	
8	48.0	40.4	
9	53.9	56.3	
10	49.1	51.6	

Mean = 51.13 ppb

%RSD Between Samples = 5.4 % (A) with Analytical variance removed.

%rsd Analytical = 6.9 %

ffp σ_{PT} Horwitz %RSD = 22 %

Allowed %RSD = 7.3 % (B)

When we apply 95% confidence intervals, the variance due to sampling is less than the allowed variance (A < B).

PASS is recorded.

Homogeneity Test: Rabbit Feed 201763

ISO 13528:2015 (E) Criteria

Simply Put:
$$S_{\text{Between Samples}}^2 \le (0.3 \times \sigma_{\text{Proficiency Testing}})^2$$

Where: $S_{\text{Between Samples}}^2 = \text{Between Sample Variance}$

σ_{Proficiency Testing} Derived from Modified Horwitz

Mycotoxin Homogeneity: Rabbit Feed 201763

a de la

	Units	Homogeneity Data Means (10 dups.)	Stability Data Means (5 dups.)	1st Decision	2nd Decision	Within Lab Analitical sd (15 dups.)
Aflatoxin B1	ppb	51.13	46.73	Pass	Pass	6.9%
Aflatoxin B2	ppb	4.56	3.23	High AV	Pass	9.9%
DON	ppm	3.15	3.04	Pass	High AV	7.1%
Fumonisin B1	ppm	0.91	0.86	High AV	Pass	7.4%
Fumonisin B2	ppm	0.13	0.17	High AV	Pass	13.2%
Fumonisin B3	ppm	0.13	0.12	High AV	Pass	21.7%
Ochratoxin	ppb	12.27	10.66	Pass	Pass	7.2%
T-2 Toxin	ppb	263.20	252.50	Pass	Pass	4.2%
HT-2 Toxin	ppb	92.71	97.26	Pass	Pass	4.1%
Zearalenone	ppb	542.21	543.87	Pass	Pass	6.4%

Trilogy Provides: Stability Data at End of Round

Homogeneity Data			
Analyte Name	Aflatoxin B1		
Sample #	Rep. 1 Rep. 2		
1	42.1	51.9	
2	47.2	55.1	
3	54.8	58.3	
4	46.6	53.0	
5	45.6	50.9	
6	58.9	53.9	
7	49.7	55.3	
8	48.0	40.4	
9	53.9	56.3	
10	49.1	51.6	

Mean Before = 51.13

Stability Data			
Analyte Name	Aflatoxin B1		
Sample #	Rep. 1	Rep. 2	
1	45.5	45.7	
2	48.8	48.6	
3	46.9	46.5	
4	48.4	45.1	
5	46.2	45.6	

Mean After = 46.73

Is this sufficient stability?

Mycotoxin Stability: Rabbit Feed 201763

Stability Test: from 08/09/2017 to 10/16/2017

ISO 13528:2015 (E) Criteria

$$\left|\overline{X}_{\text{Before}} - \overline{X}_{\text{After}}\right| \le 0.3 \times \sigma_{\text{Proficiency Testing}}$$

σ_{Proficiency Testing} Derived from Modified Horwitz

All this requires that the Analytical variance is LOW enough.

Analytical sd
$$< 0.5 \times \sigma_{\text{Proficiency Testing}}$$

Mycotoxin Stability: Rabbit Feed 201763

Stability Test: from 08/09/2017 to 10/16/2017

	Units	Mean Before	Mean After	% Difference	Difference less than Allowed?	Analytical sd Low Enough?
Aflatoxin B1	ppb	51.13	46.73	-8.6%	Caution	Yes
Aflatoxin B2	ppb	4.56	3.23	-29.2%	Fail	Yes
DON	ppm	3.15	3.04	-3.6%	Pass	Yes
Fumonisin B1	ppm	0.91	0.86	-5.4%	Caution	Yes
Fumonisin B2	ppm	0.13	0.17	28.2%	Fail	No
Fumonisin B3	ppm	0.13	0.12	-5.1%	Pass	No
Ochratoxin	ppb	12.27	10.66	-13.2%	Fail	Yes
T-2 Toxin	ppb	263.20	252.50	-4.1%	Pass	Yes
HT-2 Toxin	ppb	92.71	97.26	4.9%	Pass	Yes
Zearalenone	ppb	542.21	543.87	0.3%	Pass	Yes

Comments:

- Trilogy provides Homogeneity and Stability data with each sample. We continue to evaluate.
- This is our first look at this input.
- The high Analytical Variance tends to confound the analysis.
- We do seem to have Acceptable Homogeneity.
- As we get a better handle on the true analytical variance we should be able to better identify stability issues.
- Perhaps we should look into more appropriate storage conditions. Relay these conditions to clients to implement immediately on receiving the sample.
- A new kind of stability test.
- For Now, let's wait and see how the next couple of samples pan out.

