# AAFCO AV Limits in Consideration of Current AAFCO PT Results

Karen Fischer

Office of the Texas State Chemist

## Background

- Analytical Variations (AV): Measure of acceptable variation from the guarantee based on laboratory variance and the inherent variability of a particular analyte
- No publications have been found describing how analytical variations were first calculated
- The original data has also not been located

| Ingredient               | Method*                      | AV%            | Range                    |
|--------------------------|------------------------------|----------------|--------------------------|
| PROXIMATE ANALYS         | 15                           |                |                          |
| Moisture                 | 934.01930.15 935.29          | 12             | 3 - 40%                  |
| Protein                  | 954,01976,05976,06<br>984,13 | (20/X + 2)     | 10 - 85%                 |
| Lysine                   | 975.44                       | 20             | 0.5-4%                   |
| Fat                      | 920.39954.02 932.02          | 10             | 3 - 20%                  |
| Fiber                    | 962.09                       | (30/X + 6)     | 2 - 30%                  |
| Ash                      | 942.05                       | (45/X + 3)     | 2 - 88%                  |
| Pepsin Digest            | 971.09                       | 13             |                          |
| Total Sugar as Invert    | 925.05                       | 12             | 24 - 37%                 |
| NPN Protein              | 941.04967.07                 | (80/X + 3)     | 7 - 60%                  |
| MINERALS                 |                              |                |                          |
| Calcium                  | 927.02                       | (14/X + 6)     | 5 - 25%                  |
| 4                        | 968.08                       | 10             | 10 . 25%                 |
| a                        | 100.00                       | 12             | < 10%                    |
| Bosphonis                | 964.06965.17                 | (3/3 + 3)      | 5.20%                    |
| Salt                     | 969-10                       | (703 + 5)      | 5 . 14%                  |
| a                        | 943.01                       | $(1578 \pm 9)$ | 5 . 14%                  |
| Fluerine                 | 975.08                       | 40             | IN THE REAL              |
| Cobalt                   | 968.08                       | 25             | 01 - 16%                 |
| Lodina .                 | 934 03935 14 935 56          | 40             |                          |
| Gener                    | 968.08                       | 25             | 03 - 1%                  |
| a<br>a                   | A Charlow and                | 30             | < 03%                    |
| Moonesian                | 968.08                       | 20             | 01 - 15%                 |
| live                     | 968.08                       | 25             | 01 - 5%                  |
| Manganese                | 968.08                       | 30             | 01 - 17%                 |
| Potossium                | 975 03925 01                 | 15             | 04 - 8%                  |
| Zine.                    | 968.08                       | 20             | 002 - 6%                 |
| Selenium                 | 969.06                       | 25             | NOR CONT                 |
| Sodium                   | 10                           | 20             | 2.4%                     |
|                          | KP                           | 15             | .2 - 4%                  |
| VITAMINS                 |                              |                |                          |
| na sentre a<br>Ultrada t | 071.00                       | <b>20</b>      | 1000 018 000             |
| y naminA                 | 774,27                       | 30             | 1200 - 218,000<br>IITAIN |
| Vitamin B.,              | 982,20                       | 45             | 10/10                    |
| Riboflavin               | 970.65940.33                 | 30             | 1 - 1500 mg/lb           |
| Niacin                   | 961.14944.13                 | 25             | 3 - 500 mg/lb            |
| Pantothenic A cid        | 945 74                       | 25             | 4 • 190 mg/lb            |

\* Method References are from 17th Edition, AOAC Official Methods of Analysis.

#### Methods

- Data from AAFCO check sample datasets
  - From 2014-2017
- 53 total datasets with each dataset containing many different analytes
- Individual observations that had a z-score above 3 or were flagged for another error were deleted from the dataset
- Mean, standard deviation, and 2 x Coefficient of variation were calculated for each analyte within each dataset
- 2 x Coefficient of variation was compared to the AV levels in the AAFCO official publication
- Some of the concentrations fell outside the guarantee range established in the official publication

|     | AAFCO D | ataset 1      |              |           |         |              |          |          |              |           |          |          |          |
|-----|---------|---------------|--------------|-----------|---------|--------------|----------|----------|--------------|-----------|----------|----------|----------|
| Lab | Analyte | Concentration |              |           |         |              |          |          |              |           |          |          |          |
| 1   | Protein | 32            |              |           |         |              |          |          |              |           |          |          |          |
| 2   | Protein | 34            | $\mathbf{X}$ |           |         |              |          |          |              |           |          |          |          |
| 3   | Protein | 25            |              |           |         |              |          |          |              |           | Protein  | Dataset  |          |
| 1   | Calcium | 2             |              |           |         |              |          |          |              | Data      | Mean     | SD :     | 2*CV     |
| 2   | Calcium | 2.4           |              |           |         |              |          |          |              | Dataset 1 | 30.33333 | 4.725816 | 0.311592 |
| 1   | Fiber   | 4             |              |           |         |              |          |          |              | Dataset 2 | 14.33333 | 0.57735  | 0.080561 |
| 2   | Fiber   | 4.1           |              |           |         |              |          |          | X            | Dataset i | 22       | 1        | 0.090909 |
|     |         |               |              |           |         |              |          |          |              |           |          |          |          |
|     |         |               |              |           | Re      | esults Datas | set      |          |              |           |          |          |          |
|     | AAFCO D | ataset 2      |              | Data      | Analyte | Mean         | SD       | 2*CV     |              |           |          |          |          |
| Lab | Analyte | Concentration |              | Dataset 1 | Protein | 30.33333     | 4.725816 | 0.311592 |              |           | Calcium  | Dataset  |          |
| 1   | Protein | 14            |              | Dataset 1 | Calcium | 2.2          | 0.282843 | 0.25713  |              | Data      | Mean     | SD       | 2*CV     |
| 2   | Protein | 14            |              | Dataset 1 | Fiber   | 4.05         | 0.070711 | 0.034919 |              | Dataset 1 | 2.2      | 0.282843 | 0.25713  |
| 3   | Protein | 15            |              | Dataset 2 | Protein | 14.33333     | 0.57735  | 0.080561 |              | Dataset 2 | 10.5     | 0.707107 | 0.134687 |
| 1   | Calcium | 11            |              | Dataset 2 | Calcium | 10.5         | 0.707107 | 0.134687 |              | Dataset i | 6.5      | 2.12132  | 0.652714 |
| 2   | Calcium | 10            |              | Dataset 2 | Fiber   | 18           | 2.828427 | 0.31427  | $\backslash$ |           |          |          |          |
| 1   | Fiber   | 16            |              | Dataset i | Protein | 22           | 1        | 0.090909 |              |           |          |          |          |
| 2   | Fiber   | 20            |              | Dataset i | Calcium | 6.5          | 2.12132  | 0.652714 |              |           |          |          |          |
|     | •       |               | 1            | Dataset i | Fiber   | 14.5         | 3.535534 | 0.48766  |              |           |          |          |          |
|     | •       |               |              |           |         |              |          |          |              |           | Fiber L  | ataset   | 04-017   |
|     | •       |               |              |           |         |              |          |          |              | Data      | Mean     | SD SD    | 2*CV     |
|     | AAFCO D | ataset i      |              |           |         |              |          |          |              | Dataset 1 | 4.05     | 0.070711 | 0.034919 |
| Lab | Analyte | Concentration |              |           |         |              |          |          |              | Dataset 2 | 18       | 2.828427 | 0.31427  |
| 1   | Protein | 21            |              |           |         |              |          |          |              | Dataset i | 14.5     | 3.535534 | 0.48766  |

| Mar OO Dataset I |         |               |  |  |  |
|------------------|---------|---------------|--|--|--|
| Lab              | Analyte | Concentration |  |  |  |
| 1                | Protein | 21            |  |  |  |
| 2                | Protein | 22            |  |  |  |
| 3                | Protein | 23            |  |  |  |
| 1                | Calcium | 5             |  |  |  |
| 2                | Calcium | 8             |  |  |  |
| 1                | Fiber   | 12            |  |  |  |
| 2                | Fiber   | 17            |  |  |  |

| Analyte                 | Meet Current   | Out of         | Higher than     |  |  |
|-------------------------|----------------|----------------|-----------------|--|--|
|                         | AV             | Concentration  | Current AV      |  |  |
|                         |                | Range          |                 |  |  |
| Ash                     | 45/52 = 86.5%  | 2/52 = 3.8%    | 5/52 = 9.6%     |  |  |
| Fat                     | 25/104 = 24.0% | 18/104 = 17.3% | 61/104 = 58.7%  |  |  |
| Fiber                   | 3/152 = 2.0%   | 28/152 = 18.4% | 121/152 = 79.6% |  |  |
| L-Lysine                | 46/51 = 90.2%  | 4/51 = 7.8%    | 1/51 = 2.0%     |  |  |
| Moisture                | 10/52 = 19.2%  | 1/52 = 1.9%    | 41/52 = 78.8%   |  |  |
| NPN protein             | 0/5 = 0%       | 2/5 = 40%      | 3/5 = 60%       |  |  |
| Protein                 | 18/52 = 34.6%  | 6/52 = 11.5%   | 28/52 = 53.8%   |  |  |
| Total sugar             | 1/47 = 2.1%    | 43/47 = 91.5%  | 3/47 = 6.4%     |  |  |
| Calcium                 | 37/52 = 71.2%  | 5/52 = 9.6%    | 10/52 = 19.2%   |  |  |
| Cobalt                  | 4/50 = 8.0%    | 0/50 = 0%      | 46/50 = 92.0%   |  |  |
| Copper                  | 34/53 = 64.2%  | 0/53 = 0%      | 19/53 = 35.8%   |  |  |
| Fluorine                | 1/2 = 50.0%    | 0/2 = 0%       | 1/2 = 50.0%     |  |  |
| Iodine                  | 1/5 = 20%      | 0/5 = 0%       | 4/5 = 80.0%     |  |  |
| Iron                    | 40/52 = 76.9%  | 0/52 = 0%      | 12/52 = 23.1%   |  |  |
| Magnesium               | 52/52 = 100%   | 0/52 = 0%      | 0/52 = 0%       |  |  |
| Manganese               | 50/52 = 96.2%  | 0/52 = 0%      | 2/52 = 3.8%     |  |  |
| Phosphorus              | 40/52 = 76.9%  | 6/52 = 11.5%   | 6/52 = 11.5%    |  |  |
| Potassium               | 47/52 = 90.4%  | 0/52 = 0%      | 5/52 = 9.6%     |  |  |
| Salt                    | 36/52 = 69.2%  | 16/52= 30.8%   | 0/52 = 0%       |  |  |
| Selenium                | 8/53 = 15.1%   | 0/53 = 0%      | 45/53 = 84.9%   |  |  |
| Sodium                  | 36/52 = 69.2%  | 16/52 = 30.8%  | 0/52 = 0%       |  |  |
| Zinc                    | 45/52 = 86.5%  | 0/52 = 0%      | 7/52 = 13.5%    |  |  |
| Niacin                  | 4/12 = 33.3%   | 0/12 = 0%      | 8/12 = 66.7%    |  |  |
| Pantothenic acid        | 2/12 = 16.7%   | 0/12 = 0%      | 10/12 = 83.3%   |  |  |
| Riboflavin              | 14/39 = 35.9%  | 0/39 = 0%      | 25/39 = 64.1%   |  |  |
| Vitamin A               | 1/43 = 2.3%    | 0/43 = 0%      | 42/43 = 97.7%   |  |  |
| Vitamin B <sub>12</sub> | 1/6 = 16.7%    | 0/6 = 0%       | 5/6 = 83.3%     |  |  |

#### Results

- Fat, fiber, moisture, protein, selenium, riboflavin, and vitamin A were the major analytes who had a large percentage of higher AV.
- A few of the analytes are harder to distinguish due to their small sample size.

## **Further Actions**

- Created possible changes to the AV using tolerance intervals
  - Tolerance intervals are similar to confidence intervals, but look at the distribution instead of a single parameter like the mean.
  - The tolerance interval used for this was a 95%, 90% interval
- Some of the analytes have AV that are dependent on concentration.
  - Spearman's correlation coefficient was used to determine which ones are dependent.

#### Spearman's Correlation Coefficients

| Analyte    | Spearman's Correlation |
|------------|------------------------|
| Ash        | 331                    |
| Cobalt     | 586                    |
| Moisture   | 658                    |
| Phosphorus | 189                    |
| Calcium    | 347                    |
| Copper     | 842                    |
| Fat        | 726                    |
| Fiber      | 598                    |
| Iron       | .272                   |
| Lysine     | 301                    |
| Magnesium  | 168                    |
| Manganese  | 248                    |
| Potassium  | 434                    |
| Protein    | 745                    |
| Selenium   | 359                    |
| Zinc       | 376                    |

#### Example - Fat



Fat

## Example - Fat

- Check Spearman's correlation coefficient
  - -.726
- Concentration dependent so a linear regression model was fit
- Q-Q plot was used to check for the normality assumption
- The 95% tolerance interval was found using the regression line
  - $AV = 55.6e^{-.054 * x}$

#### Example - Fat



# Computed AV

| Analyte    | New AV (%)        | Current AV (%) |
|------------|-------------------|----------------|
| Ash        | $9.9e^{005*x}$    | (45/x + 3)     |
| Moisture   | $56.9e^{079*x}$   | 12             |
| Cobalt     | $86.1e^{008 * x}$ | 25             |
| Phosphorus | 13                | (3/x + 8)      |
| Calcium    | $13.6e^{0006*x}$  | (14/x + 6)     |
| Fat        | $55.6e^{054*x}$   | 10             |
| Fiber      | $50.9e^{02*x}$    | (30/x + 6)     |
| Iron       | 33                | 25             |
| Lysine     | 16                | 20             |
| Magnesium  | 15                | 20             |
| Manganese  | 21                | 30             |
| Potassium  | $18.5e^{08*x}$    | 15             |
| Protein    | $4.6e^{006*x}$    | (20/x + 2)     |
| Selenium   | $61.9e^{002*x}$   | 25             |
| Zinc       | $26.5e^{00002*x}$ | 20             |