

OFFICE OF REGULATORY AFFAIRS

# Applications of High Resolution MS to Veterinary Drug Residue Analysis in Aquaculture and Animal Feed

<u>Sherri Turnipseed</u>, Joe Storey, I-Lin Wu, Wendy Andersen, Mark Madson

US FDA, Animal Drugs Research Center/Denver Laboratory

AAFCO 2019 Annual Meeting Laboratory Methods and Services Committee August 6, 2019

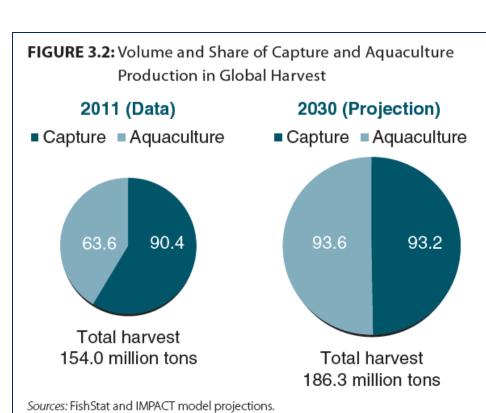
www.fda.gov

### Aquaculture



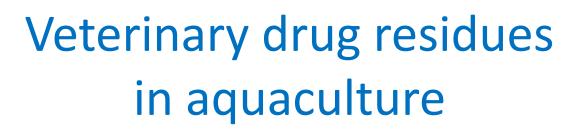
#### **Growing industry**


By 2030 over 50% of fish for human consumption will be supplied by aquaculture


#### **Global industry**

38% fish produced globally was exported in 2010 China and Southeast Asia major producers

#### Varied types of species


tilapia, shrimp, salmon, catfish, frog legs, eel





www.fda.gov

World Bank Report, Fish to 2030: Prospects for Fisheries and Aquaculture. 2013





Use:

To prevent spread of infection in dense populations

#### Approval:

- Very few drugs approved for aquaculture use in the US
- More approved in the EU and Japan
- Many more drugs potentially used in other countries

#### Potential human health effects:

- Acute and Chronic Effects
   Chloramphenicol aplastic anemia
   Triphenylmethane dyes carcinogenic
- Antimicrobial Resistance



# High Resolution MS: potential advantages for residue analysis

- Full scan data collection with accurate mass allows screening for virtually unlimited number of compounds.
- Don't preselect analytes to monitor, so target and nontarget analytes are detected.
- Data can be evaluated retrospectively.
- Fragment ions can be obtained for further characterization of analyte.

# Objectives for method to screen for FDA drugs in aquaculture

- Develop analytical screening method for veterinary drug residues in fish using HRMS.
- Initially optimize and validate method for 70 test compounds most likely to be used in aquaculture.
- Use HRMS capability with vet drug database to screen samples for hundreds of additional compounds.

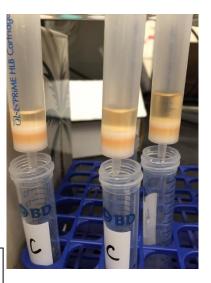





# **Extraction procedure**



#### Acidic acetonitrile (ACN) extraction


2 g tissue

Add 8 mL ACN with 0.2% p-toluene sulfonic acid and 2% glacial acetic acid Centrifuge



#### OASIS HLB PRIME SPE (200 mg)

Pass 3 mL of extract through SPE Evaporate to near dryness (Save portion of eluent to analyze directly for nonpolar compounds)

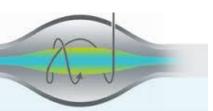


Reconstitute in 400 µL 10% ACN in water Centrifuge Aliquot portion to LC vial

www.fda.gov

### Data acquisition

**LC**: Thermo Ultimate 3000 LC system with C18 fused-core reversed-phase column. Mobile phase gradient 0.1 % formic acid and acetonitrile (ACN)


**MS**: Thermo Q-Exactive Orbitrap High Resolution MS with a heated electrospray source (using both classic QE and QE-HF)


Two types of acquisition programs were evaluated:

**Nontargeted**: collect product ion data for <u>all precursor ions</u> simultaneously <u>All Ion</u> Fragmentation (AIF) or sequentially by isolating segments of precursor ions <u>Data</u> Independent Analysis (DIA)

**Targeted:** isolate and collect product ion data only if targeted precursor ion on a list has abundance above threshold *Data Dependent MS<sup>2</sup> (DDMS<sup>2</sup>)* or always when analyte is eluting *Parallel Reaction Monitoring (PRM)* using inclusion lists

www.fda.gov







### Data analysis

#### 1) Initial NonTargeted Data Acquisition with AIF or DIA

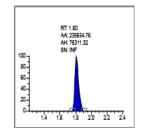


#### a) Targeted Data Analysis: Limit testing and identification of test compounds

- Use "TraceFinder Quant" to analyze 70-100 test compounds
- Match 5 ppm window (MS<sup>1</sup>), 0.5 min retention time, one fragment ion (10 ppm)
- Compare to matrix-extracted standard fortified with test compounds at TTL

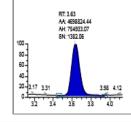
#### b) Semi-targeted Data Analysis: Expand screening for more drug residues

- Use "TraceFinder Screening" to search against larger analyte database (N > 450)
- Use 3 ppm window with higher signal criteria to limit detections
- Compare RT and fragment ions if known


#### 2) Additional Targeted Data Acquisition

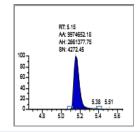
#### **Data Analysis of Product Ion Spectra**

- Examine product ion spectra for analytes on inclusion list found in sample
- Use "TraceFinder "Quant" and "Screening" to compare residues to database
- Follow up with manual evaluation of spectral data and compare to known spectra


# Example MS<sup>1</sup> data spiked sample

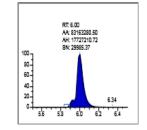





#### Amoxicillin

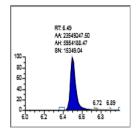
| Quan Peak: | 366.11182 m/z   |
|------------|-----------------|
| Peak Area: | 235655          |
| RT:        | 1.80 min (1.80) |
| Amount:    | 95 ng/g         |




#### Sulfathiazole

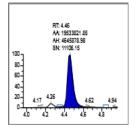
| Quan Peak: | 256.02089 m/z   |
|------------|-----------------|
| Peak Area: | 4698824         |
| RT:        | 3.63 min (3.60) |
| Amount:    | 9.5 ng/g        |
|            |                 |




#### Sarafloxacin

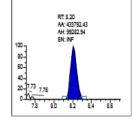
| Quan Peak: | 386.13107 m/z  |
|------------|----------------|
| Peak Area: | 9974652        |
| RT:        | 5.15 min (5.40 |
| Amount:    | 4.6 ng/g       |
|            |                |




| i initiaco sint |                 |
|-----------------|-----------------|
| Quan Peak:      | 435.29030 m/z   |
| Peak Area:      | 83163280        |
| RT:             | 6.00 min (6.09) |
| Amount:         | 44 ng/g         |
|                 |                 |

Tilmicosin

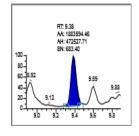



#### Oxolinic acid

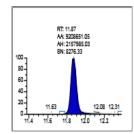
| Quan Peak: | 262.07100 m/z   |
|------------|-----------------|
| Peak Area: | 23549248        |
| RT:        | 6.49 min (6.60) |
| Amount:    | 9.5 ng/g        |
|            |                 |



#### Oxytetracycline


| Quan Peak: | 461.15546 m/z   |
|------------|-----------------|
| Peak Area: | 19533822        |
| RT:        | 4.46 min (4.70) |
| Amount:    | 93 ng/g         |




#### Leucomalachite green Quan Peak: 331.21688 m/z Peak Area: 433792 8.20 min (8.24) RT:

Amount:

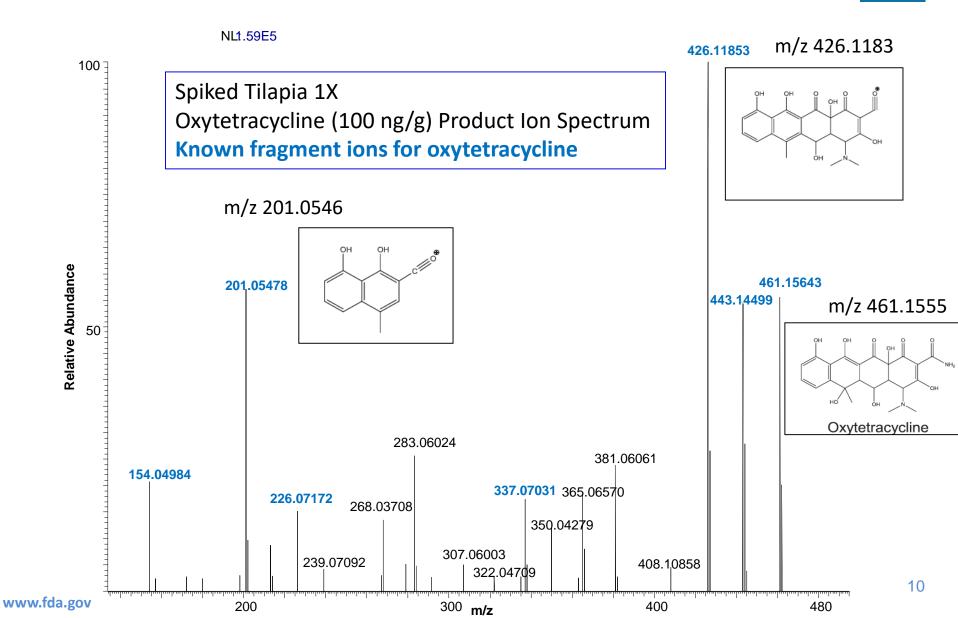
0.78 ng/g



| Methyl testo | osterone        |
|--------------|-----------------|
| Quan Peak:   | 303.23186 m/z   |
| Peak Area:   | 1883594         |
| RT:          | 9.38 min (9.40) |
| Amount:      | 0.37 ng/g       |



#### Ivermectin B1a


| Quan Peak: | 897.49708 m/z     |
|------------|-------------------|
| Peak Area: | 9208651           |
| RT:        | 11.87 min (12.00) |
| Amount:    | 130 ng/g          |

Tilapia spiked with 70 compounds at target testing level.

MS<sup>1</sup> data shown. Also collected MS<sup>2</sup> data and evaluated time and isotopic match.

# MS<sup>2</sup> data for spiked sample







### Validation of method



#### **Fortified samples:**

- 70 validation compounds (60 positive ion; 10 negative ion) in 5 species, 2-3 sources for each species of fish
- Fortified at target testing level (1X) to determine threshold for limits test (Semi-quantitative screen with MS identification)
- Also fortified at 2X, 0.5X, and 0.1X to determine minimum detection levels and lowest confirmation levels
- Determined false positive and false negative rates; approximate recoveries compared to solvent standards

#### Based on

- FDA OFVM Guidelines for Validation of Chemical Methods v2
- Acceptance Criteria for Confirmation of Identity of Chemical Residues using Exact Mass Data for the FDA FVM Program



### **Comparison of data acquisition**

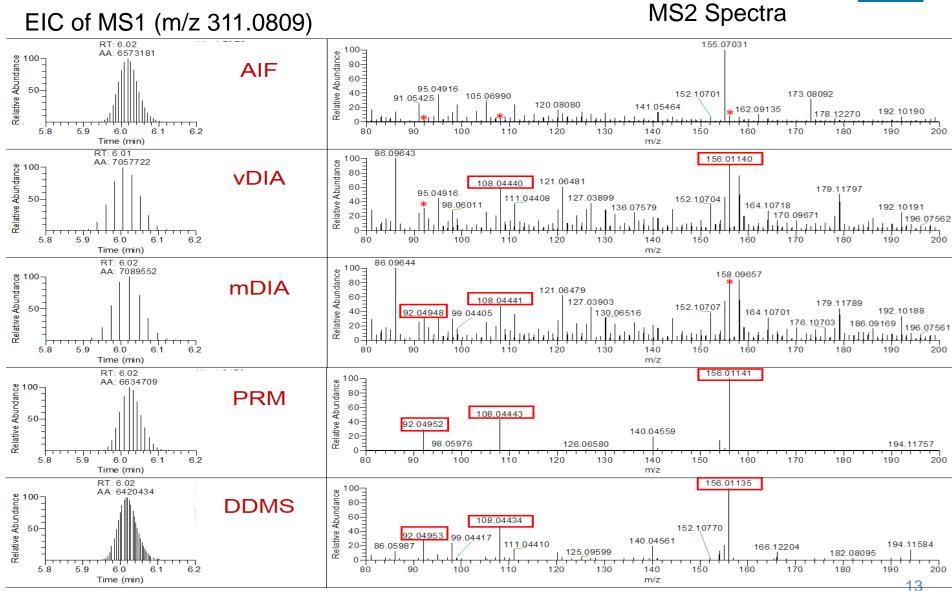
### **Residues confirmed at 1X target testing level**



Confirmed = MH<sup>+</sup> (5 ppm), one fragment (10 ppm), RT match

### Nontargeted

- > 90% validation compounds confirmed at 1X with AIF
- Most confirmed with AIF at much lower levels (0.1-0.5X of target testing level)
- Recently compared different DIA methods to AIF with similar results


### Targeted

- ~ 70% of validation compounds depending on matrix with DDMS<sup>2</sup>
- Compounds with low target testing levels (dyes) or low method recovery(β-lactams) don't meet threshold to trigger DDMS<sup>2</sup>
- Some confirmed at higher levels
- Recently compared PRM (limited # of compounds) to DDMS<sup>2</sup> w/ better results
- Continue to improve method by exploring different data acquisition methods www.fda.gov

### **Comparison of scan types**

#### Sulfadoxine 10 ng/g in spiked eel





www.fda.gov

Submitted to Rapid Commun. MS (2019)

### **Application of HRMS screen**



- Analyze incurred aquaculture samples obtained from CVM.
  - Analyzed dosed salmon, trout, catfish
  - Detected and characterized metabolites in addition to parent compounds
- Applied method to violative regulatory samples
- Include additional analytes in method (beyond veterinary drugs)

# Application of method: incurred fish

| Fish    | Dosed with                                             | Test Compounds found by HRMS Screen (ng/g)*                              | Other compounds found by HRMS                           |
|---------|--------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|
| Tilapia | Sulfadiazine                                           | Sulfadiazine (220)                                                       | N <sup>4</sup> acetyl sulfadiazine,<br>Ethoxyquin Dimer |
| Catfish | Enrofloxacin                                           | Enrofloxacin (600)<br>Ciprofloxacin (30)                                 | Desethylene enrofloxacin                                |
| Salmon  | Difloxacin                                             | Difloxacin (102)<br><i>Sarafloxacin (1)</i>                              |                                                         |
| Salmon  | Doramectin                                             | Doramectin (23)                                                          |                                                         |
| Salmon  | Malachite green,<br>Brilliant green,<br>Crystal violet | Malachite green (2)<br>Leucomalachite green (0.8)<br>Brilliant Green (4) |                                                         |
| Trout   | Ampicillin                                             | Ampicillin (125)                                                         |                                                         |
| Trout   | Amoxicillin                                            | Amoxicillin (90)                                                         | Amoxicillin diketone                                    |

\*The concentration of test compounds found by HRMS screen compared well to values obtained by QqQ methods (when available)

### Amoxicillin incurred fish

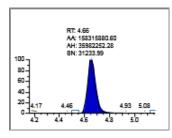
#### AMOX MSMS (RT = 1.9)



FDA

# Application: Imported eel sample

- Farm raised eels are susceptible to the use of chemotherapeutics because they are raised in confined spaces (tanks or barrels)
- Multiple veterinary drug residues have been found in imported eel samples using targeted LC-MS/MS method (triple quadrupole)
- Can we use HRMS screening method to determine what other residues or chemical contaminants might we be missing?




FDA

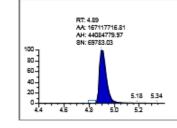
# **Application: Imported eel sample**



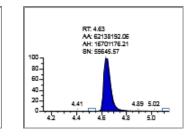
#### Presumptive positive for test compounds



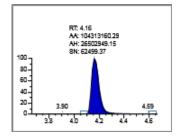
4.66 min


85 ng/g

Sulfamethazine

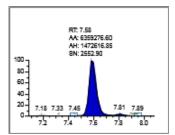

Quan Peak:

Amount:


RT:



Enrofloxacin Quan Peak: 360.17180 m/z 279.09102 m/z RT: 4.89 min 58 ng/g Amount:

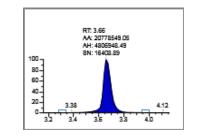



Ciprofloxacin Quan Peak: 332.14050 m/z RT: 4.63 min 44 ng/g Amount:

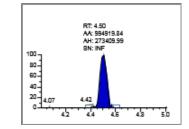


Trimethoprim

| Quan Peak: | 291.14517 m/z |
|------------|---------------|
| RT:        | 4.16 min      |
| Amount:    | 22 ng/g       |




Ethoxyquin


| Quan Peak: | 218.15394 m/z |
|------------|---------------|
| RT:        | 7.58 min      |
| Amount:    | 87 ng/g       |

#### Other test compounds found (< 50% TTL)

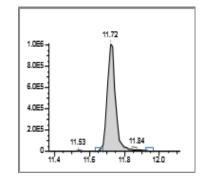
RT:



Lincomycin Quan Peak: 407.22103 m/z 3.66 min Amount: 11 ng/g

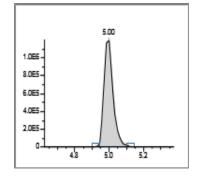


Oxytetracycline Quan Peak: 461.15546 m/z RT: 4.50 min Amount: 1.8 ng/g



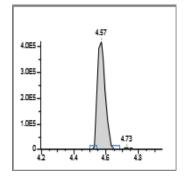

www.fda.gov

### Data from eel sample




#### From screening larger database compounds (N ~450):

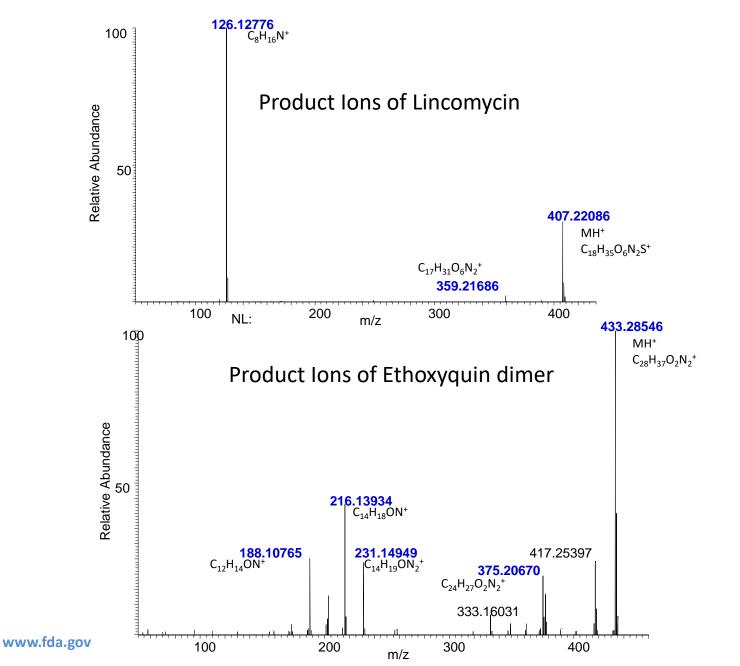



#### **Ethoxyquin Dimer**

AA: 3341515 RT: 11.72 min m/z: 433.285 (433.285) D m/z (ppm): 0.05



#### N4-acetyl-sulfamethazine


| AA:  | 4372013             |
|------|---------------------|
| RT:  | 5 min               |
| m/z: | 321.1013 (321.1016) |
| D m/ | ′z (ppm): -0.85     |

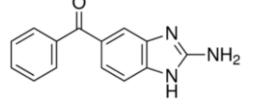


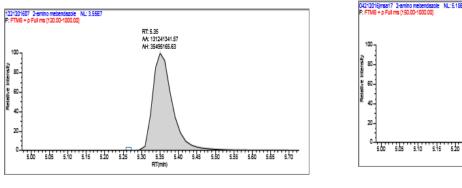
#### **Desethylene Enrofloxacin**

| AA:  | 1424542            |
|------|--------------------|
| RT:  | 4.57 min           |
| m/z: | 334.157 (334.1562) |
| Dm/  | z (ppm): 2.4       |

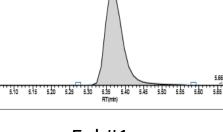
### Targeted MS2 data from eel




20


FDA

# Retrospective data analysis of sample FDA


- Other potential hits included **2-amino mebendazole (+)** but we did not initially have retention time or known fragment ions for this compound.
- After obtaining and analyzing standards of 2-amino mebendazole we reevaluated the data from eel samples. 2-amino mebendazole was confirmed (time and fragment ions match)

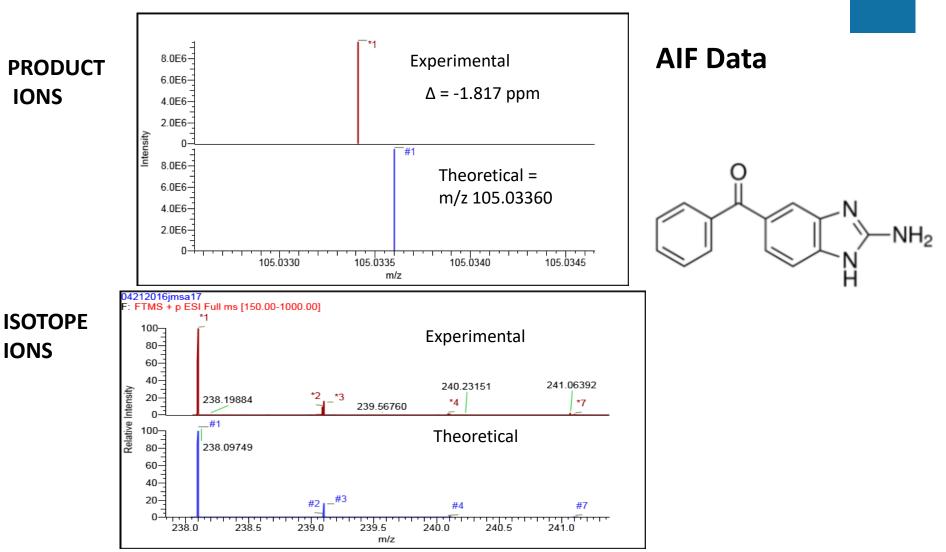
2-amino mebendazole





100 ng/mL std




566 569 571

RT: 5.35 AA: 169443915.51

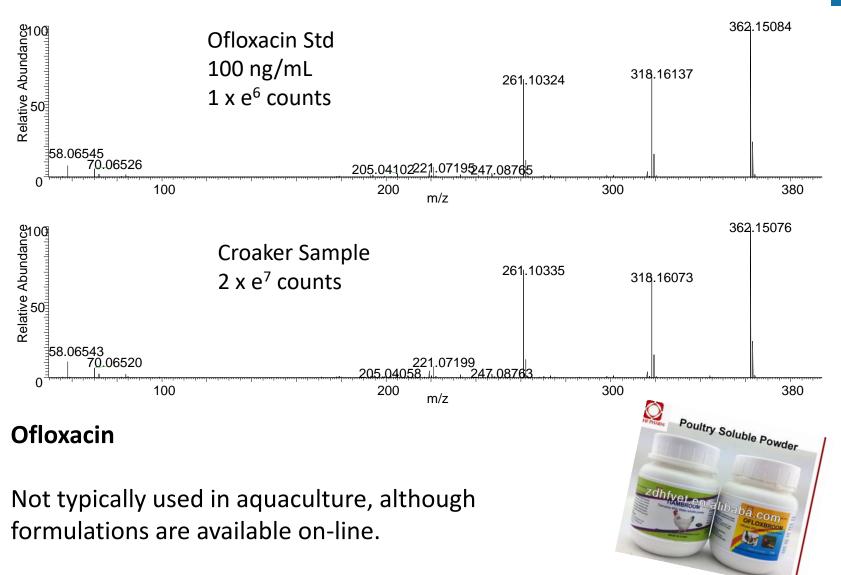
AH: 51766878.43

Eel #1

### 2-amino mebendazole in eel



Previous Work : Residue study of mebendazole and its metabolites in eel after bath treatment, *Drug Metab Disp*. 1997 2-amino mebendazole has since been added to routine FDA QqQ regulatory method


www.fda.gov

#### FDA Data from imported fish sample RT: 4.92 AA: 12317929845.51 RT: 4.69 AA: 1082746391.86 AH: 374149958.79 AH: 3074214175.09 100-100-90-90-OH 80-Relative Intensity 80-70-70-60-Relative Inter 60-50-50-40-40-30-30-20-20-10-10-4.79 5.27 4.60 4.69 4.71 4.90 4.57 0-4.38 4.40 4.45 4.50 4.8 5.0 4.6 4.7 4.9 5.1 5.2 4.4 4.7 4.9 4.5 4.6 4.8 5.0 RT(min) RT(min) Enrofloxacin, > 3000 ng/g Ciprofloxacin, ~500 ng/g RT: 4.60 AA: 1080304711.84 AH: 359963885.57 100-O٢ 90-80-Relative Intensity 70-60-50-40-30-20-10-4.28 4.31 4.40 4.47 4.3 4.4 4.5 4.6 4.7 4.8 4.9 RT(min) **Yellow Croaker**

Ofloxacin, ? ng/g www.fda.gov Similar area counts to ciprofloxacin

# Data from imported fish sample





# Residues in the environment





Table 1. Concentrations of the Four Typical Fluoroquino-lone Antibiotics Detected in the Sewage Water and SurfaceWater Samples

|               | Sibao ST | Sibao STP (ng/L) |        | surface water (ng/L) |         |  |
|---------------|----------|------------------|--------|----------------------|---------|--|
| compounds     | influent | effluent         | site 1 | site 2               | average |  |
| ofloxacin     | 1405     | 429              | 51.6   | 45.7                 | 48.7    |  |
| norfloxacin   | 248      | 96               | 7.0    | 12.9                 | 10.0    |  |
| ciprofloxacin | 268      | 199              | 9.3    | 11.0                 | 10.2    |  |
| enrofloxacin  | 108      | 54               | 10.5   | 18.7                 | 14.6    |  |
| total FQs     | 2029     | 778              | 78.4   | 88.3                 | 83.5    |  |

Tong et al. J Ag Food Chem (2011) 59, 7303

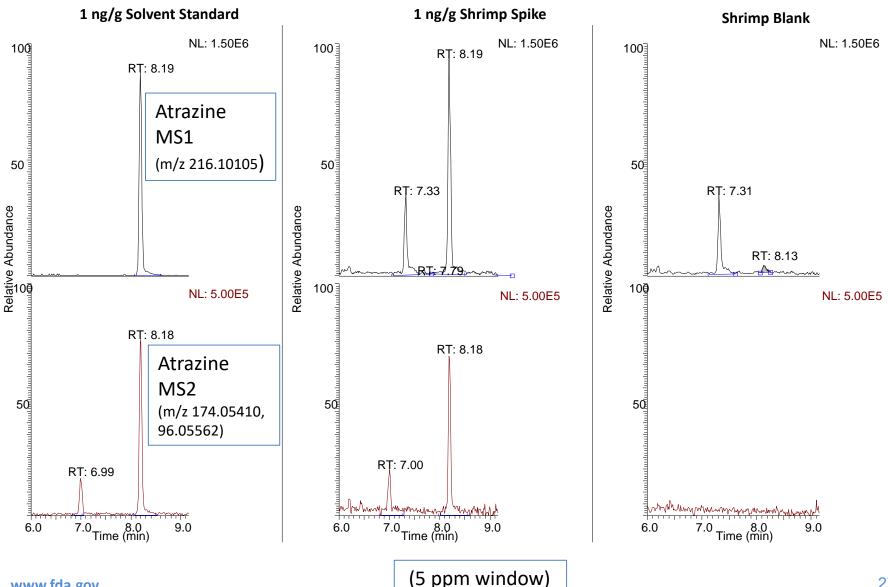
- Ofloxacin has also been found in sewage water and surface water in China and many other parts of the world
- Environmental contamination could be another potential source of residues in fish

### Expanding method

Validating for addition chemical contaminants

- Disinfectants/Antimicrobial Soaps
  - Benzalkonium chlorides, triclocarban, triclosan

### Pesticides

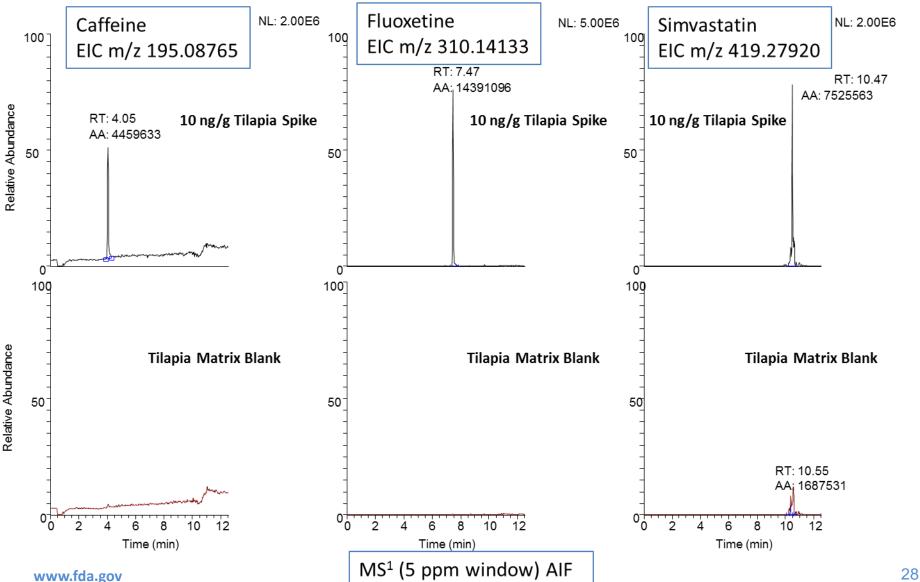

- Few dozen likely to be found in aquaculture from agricultural run-off
- LC-MS compounds
- Human Pharmaceuticals/Emerging Contaminants
  - Those commonly found in surface water
  - Includes drugs for depression, hypertension, pain
- Additional Veterinary Drug Compounds
  - More antibiotics, anti-wormers, etc.







### Example: Atrazine in shrimp




#### www.fda.gov

FDA

### Example: Human drugs in tilapia

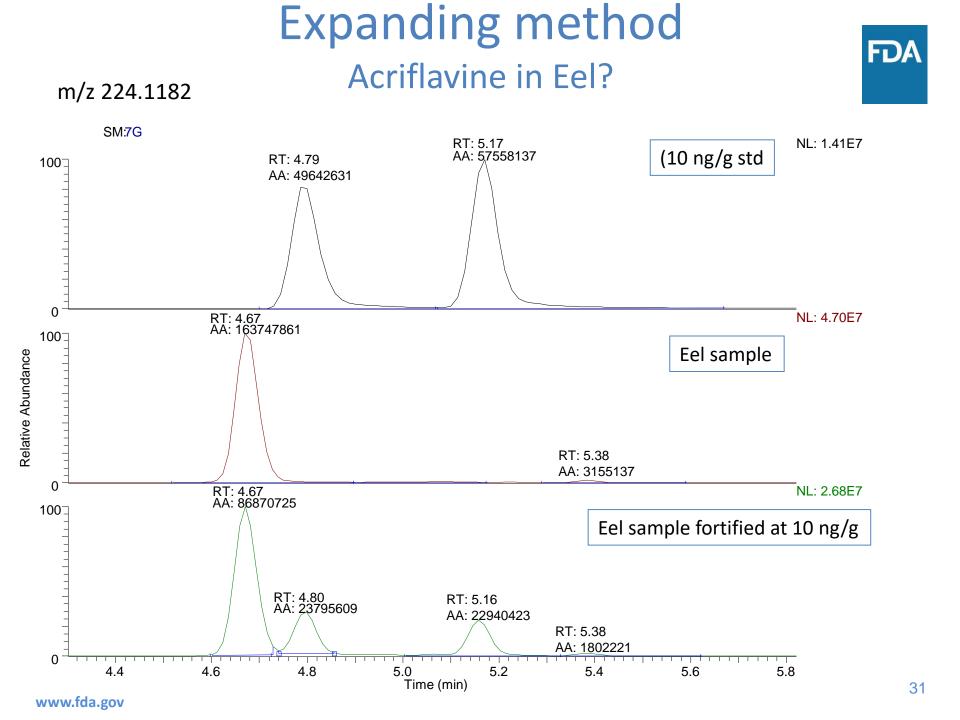




### **Expanding method** Validating for additional chemical contaminants



| 1,3-Dibromo-5,5-dimethylhydantoin                                                                                                                      | Atenolol                                                                                   | Gemfibrozil                                                                           | Rifampin                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1,3-Dichloro-5,5-dimethylhydantoin                                                                                                                     | Caffeine                                                                                   | Ibuprofen                                                                             | Aldicarb/Aldicarb sulfone/Aldicarb sulfoxide                             |
| Benzalkonium chlorides                                                                                                                                 | Carbamazepine                                                                              | Metformin                                                                             | Methylene blue                                                           |
| Triclocarban                                                                                                                                           | Clarithromycin                                                                             | Naproxen                                                                              | Acriflavine/Proflavine                                                   |
| Triclosan                                                                                                                                              | Clofibric acid                                                                             | Propranolol                                                                           | Rotenone                                                                 |
| Amitraz (degradant)                                                                                                                                    | Diclofenac                                                                                 | Ranitidine                                                                            | Thiabendazole                                                            |
| Atrazine                                                                                                                                               | Diltiazem                                                                                  | Sertraline                                                                            | Sulfisoxazole                                                            |
| Azadirachtin                                                                                                                                           | Diphenhydramine                                                                            | Simvastatin                                                                           | Rifaximin                                                                |
| Azamethiphos                                                                                                                                           | Fluoxetine                                                                                 | Sotalol                                                                               | Roxithromycin                                                            |
| Benzocaine                                                                                                                                             |                                                                                            | Valsartan                                                                             | Marbofloxacin                                                            |
| Carbaryl                                                                                                                                               |                                                                                            |                                                                                       | Orbifloxacin                                                             |
| Carbofuran                                                                                                                                             |                                                                                            |                                                                                       | Baquiloprim                                                              |
| Cypermethrin                                                                                                                                           |                                                                                            |                                                                                       | Virginiamycin M1                                                         |
|                                                                                                                                                        | ally ~ 60 additional (                                                                     | compounds                                                                             |                                                                          |
|                                                                                                                                                        |                                                                                            | Lonnounus                                                                             |                                                                          |
| Etofenprox                                                                                                                                             |                                                                                            | compounds                                                                             |                                                                          |
| Etofenprox                                                                                                                                             |                                                                                            | ·                                                                                     |                                                                          |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion                                                                                                   | majority worked we                                                                         | ell through th                                                                        | e method, some <del>were not</del>                                       |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion                                                                                                   | majority worked we                                                                         | ell through th                                                                        | e method, some <del>were not</del><br>only at higher levels              |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion                                                                                                   | majority worked we                                                                         | ell through th                                                                        |                                                                          |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion<br>Phoxim<br>Praziquantel                                                                         | ,<br>majority worked we<br><del>cted</del> , and others we                                 | ell through th<br>ere detected                                                        | only at higher levels                                                    |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion<br>Phoxim<br>Praziquantel                                                                         | majority worked we                                                                         | ell through th<br>ere detected                                                        | only at higher levels                                                    |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion<br>Phoxim<br>Praziquantel<br>Propazine<br>Quinalphos<br>Simazine                                  | majority worked we<br>ected, and others we<br>ed 4 different fish fo                       | ell through th<br>ere detected<br>ortified at 100                                     | only at higher levels<br>), 10 and 1 ng/g                                |
| Etofenprox<br>Fipronil/Fipronil sulfone<br>Malathion<br>Phoxim<br>Praziquantel<br>Propazine<br>Quinalphos<br>Simazine                                  | majority worked we<br>ected, and others we<br>ed 4 different fish fo                       | ell through th<br>ere detected<br>ortified at 100                                     | only at higher levels                                                    |
| EtofenproxFipronil/Fipronil sulfoneMalathionPhoximPraziquantelPropazineQuinalphosSimazineTrichlorfon                                                   | majority worked we<br>ected, and others we<br>ed 4 different fish fo<br>increased the numl | ell through th<br>ere detected<br>ortified at 100<br>ber of residue                   | only at higher levels<br>), 10 and 1 ng/g<br>es validated for our method |
| EtofenproxFipronil/Fipronil sulfoneMalathionPhoximPraziquantelPropazineQuinalphosSimazineTrichlorfonTrichloroisocyanuric acidTrichloroisocyanuric acid | majority worked we<br>ected, and others we<br>ed 4 different fish fo<br>increased the numl | ell through th<br>ere detected<br>ortified at 100<br>ber of residue<br>of the type of | only at higher levels<br>), 10 and 1 ng/g                                |


### Expanding method

Detection of additional chemical contaminants



Using HRMS screening method, several eel samples were initially presumptive positive for additional chemical contaminants. (HRMS identification criteria were met using non-targeted data acquisition)

- Further analysis (targeted MS<sup>2</sup> data acquisition, standard addition, analysis on separate QqQ method) confirmed thiabendazole (~ 6 ng/g) in one eel sample.
- Acriflavine was presumptive positive in many eel samples, but further analysis (targeted MS<sup>2</sup> data acquisition, standard addition) ruled out the presence of this compound.
- Trace levels (< 1 ng/g) of diltiazem were detected in another eel sample.



# HRMS screening method for aquaculture



- HRMS screening method was able to identify test compounds in aquaculture at or below their target testing level.
- FDA Office of Foods and Vet Medicine guidance documents were followed to develop and validate methods.
- Detection and identification of other residues including metabolites demonstrated ability to expand screening in aquacultured products.
- Will begin to look at more nontargeted data analysis workflow
- Continue working to implement HRMS technology to improve enforcement of food safety.

# HRMS methods for antibiotics and chemical contaminants in animal feed



"Analysis of veterinary drug and pesticide residues in animal feed by highresolution mass spectrometry: comparison between time-of-flight and Orbitrap" (2015) Gómez-Pérez et al., Food Addit Contam A 32:1637

| Compound     | M1                   | M2          | M5          | M11       | M15       | M16       | M17       | MRL <sup>a</sup>  |
|--------------|----------------------|-------------|-------------|-----------|-----------|-----------|-----------|-------------------|
| Chlorpyrifos | 52 (65) <sup>b</sup> | 18 (18)     |             |           |           | 75 (92)   | 148 (193) | 5000 <sup>c</sup> |
| Sulfadiazine |                      |             | 1053 (1114) | 193 (217) |           |           |           |                   |
| Trimethoprim |                      |             | 311 (225)   | 157 (72)  |           |           |           |                   |
| Robenidine   |                      | 5912 (4186) |             | 36 (12)   |           |           |           | 6600 <sup>d</sup> |
| Monensin Na  | 144 (124)            | 715 (315)   |             |           | 142 (239) | 141 (189) | 100 (84)  | 1250              |

Notes: <sup>a</sup> MRL, maximum residue level.

<sup>b</sup> Concentrations obtained with TOF are given in brackets.

<sup>c</sup> Value provided for Codex Alimentarius for primary animal feed commodities.

<sup>d</sup> EU MRL.

# *Similar strategies using HRMS have been used to monitor for chemical contaminants in animal feed*

www.fda.gov

# HRMS methods for antibiotics and chemical contaminants in animal feed



"Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography—high resolution mass spectrometry" **(2016)** León et al. *Talanta* 149:43

For post-target screening a customised theoretical database including the exact mass, the polarity of acquisition and the expected adducts was built and used for post-run retrospective screening. The analytical strategy was applied to 32 feed samples collected from farms of the Valencia Region (Spain). Florfenicol, zearalenone and atropine were identified and quantified at concentrations around  $10 \ \mu g \ kg^{-1}$ . In the post-target screening of the real samples, Sulfadiazine, Thrimetoprin and Pirimiphosmethyl were tentatively identified.




Another example of HRMS been used to monitor for chemical contaminants in animal feed

# Acknowledgements



Co-authors (Animal Drugs Research Center/FDA Denver Laboratory)



FDA Denver Regulatory Laboratory

#### Thermo Scientific Application Scientists and Engineers



The information in these materials is not a formal dissemination of information by FDA and does not represent agency position or policy.