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Representing data distributions with kernel 
density estimates 
 
Histograms are the usual vehicle for representing 
medium sized data distributions graphically, but they 
suffer from several defects. The kernel density estimate 
is an alternative computer-intensive method, which 
involves smoothing the data while retaining the overall 
structure. It is a good method of reconstructing an 
unknown population from a random sample of data, 
overcomes the problems of histograms and has many 
applications in analytical chemistry. An Excel add-in 
and Minitab macro for calculating kernel density 
estimates are available in AMC Software [1]. 
 
Problems with the histogram 
The graphical representation of a data set is an 
indispensable aid to interpretation. Graphical displays 
facilitate visual judgements about central tendency, 
confidence intervals, significant difference etc. Such 
judgements are a valuable prelude to the use of statistics: 
they act as a cross-check of the statistical results, and they 
permit decisions about whether the distribution of the data 
conforms to the assumptions underlying the theory of the 
statistical test. The tools most frequently used by analytical 
scientists to visualise the distribution of univariate data are 
the dotplot and, for larger datasets, the histogram.  
 
 The histogram is simple to construct and provides an 
impression of the density distribution of the data if an 
appropriate choice of classes is used. If the data are a 
random selection, the histogram is an estimate of the 
population density distribution. However, the visual 
impression gained from a histogram can depend to an 
unwelcome extent on the intervals selected for the classes 
(i.e., the number and midpoint of the bins). A 
reconstruction of the population density more consistent 
than the histogram would therefore be welcome. Computer 
power can now fulfil this requirement with the kernel 
density estimate [2, 3]. 
 
The kernel density estimate 
The simple idea underlying the kernel estimate is that each 
data point  is replaced by a specified 
distribution (typically normal), centred on the point and 
with a standard deviation designated by h. The normal 
distributions are added together and the resulting 
distribution, scaled to have a unit area, is a smooth curve, 
the kernel density estimate, given by 
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where  is the height of the curve at x (a point on the 
x-axis), and 

),(ˆ hxf
(.)φ  is the standard normal density.  The 

appearance of the kernel density, in particular the number 
of modes, depends critically on the value of the smoothing 
parameter h, as illustrated in Figures 1 and 2. 
 

 
Figure 1. A normal kernel density (red line) derived from four data points 
(solid circles). The smoothing parameter h is the standard deviation of the 
normal kernels (black line curves). 

 
Figure 2. A normal kernel density (red line) derived from the four points 
shown in Figure 1, but with a value of h twice that shown in Figure 1.  
 
The kernel estimate, when calculated with an appropriate  
value of h, gives a good estimate of the population density 
function without making any assumptions, for example,  
that it is a normal distribution. This is useful in examples 
from analytical science, where deviation from normality is 
common. The calculations can be programmed readily and 
produced as a graphic. The only complication is 
determining an appropriate value for h. This choice is 
context-specific and requires experience and judgement. 
 



Examples  
Here we show three examples of kernel distributions of 
data from interlaboratory exercises in analytical science, 
namely, proficiency test results from the Food Analysis 
Performance Assessment Scheme (FAPAS™) [4]. 
 
Figure 1 shows results obtained for the mycotoxin aflatoxin 
M1 in milk (FAPAS 0472). The data points alone (Figure 
3) suggest the possibility of a multimodal dataset. This 
appearance often happens by chance in dotplots and 
histograms of small random samples from unimodal 
populations. However, comparable interlaboratory studies 
[5] tell us that in this instance a reproducibility standard 
deviation of about 14 parts per trillion should be expected.  
We can use this value to obtain a suitable h value:  0.75 
times the expected value should be wide enough to smooth 
out any artifactual modes, but small enough to avoid undue 
‘smearing’ of the data. When we construct a kernel density 
on this basis, we see a unimodal and almost symmetric 
curve (Figure 3). Close inspection shows that the curve has 
slightly heavier tails than a normal distribution. 

 
Figure 3. Analytical results for aflatoxin M1 in milk (FAPAS 0472), 
showing data points (crosses) and the kernel density representation (line). 
 
 
Figure 4 shows results for polyunsaturated fatty acids in 
cooking oil (FAPAS 1416). Again the dotplot suggests that 
the data might be multimodal. Considerations similar to the 
above show that an h-value of 0.55 % would be 
appropriate, and this gave rise to a kernel density with a 
mode at about 39.3 and a pronounced shoulder at 40.6 %. 
Further investigation showed that these features were 
accounted for by the use of two different calibration 
protocols among the participants. 
 
Figure 5 shows results for tin in fruit juice (FAPAS 0760). 
Here the dotplot rather strongly suggests that the data are 
multimodal. When we construct a kernel density, by using 
an h-value of 10 ppm, we see a curve with thee modes and 
a high shoulder. The most prominent mode corresponds 
closely with the concentration of tin spiked into the fruit 
juice, and presumably represents laboratories using 
appropriate analytical methods. The lower modes 
presumably represent low recovery of tin (a well-known 
circumstance). 

 
Figure 4. Analytical results for polyunsaturated fatty acids in cooking oil 
(FAPAS 1416), showing data points (crosses) and the kernel density 
representation (line). 

 
Figure 5. Analytical results for tin in fruit juice (FAPAS 0760), showing 
the data points (crosses) and the kernel density representation (line). 
 
Conclusions 
The examples show that the kernel density estimator is a 
useful method of representing the overall structure of the 
data. Some expertise and judgement is required for the 
selection of an appropriate value of the smoothing 
parameter h. 
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