

2014 AAFCO Check Sample Mycotoxins Program

Samples Engineered to Contain Relevant Concentrations of Significant Mycotoxins.

The Samples

Source the base feed.

Materials thoroughly processed with regard to particle size and blending.

70,000 lb Masters Collection

- Carefully sourced feeds naturally contaminated with Mycotoxins.
- Incubated to raise concentration.

- Homogenous Samples for distribution.
- Certificate of Analysis and homogeneity data.

In Sacramento Last Summer: I reported on Sample 201461, Poultry Feed. Our First Sample!

Two More Samples Completed Last Year:

- 201462, Swine Feed (Issue Date: August 31st)
- 201463, Cattle Feed (Issue Date: October 31st)

All 3 Samples Reported:

- Using a Reference Lab Assigned Value for Measure of Location
- Horwitz %RSD Measure of Dispersion

We will talk about the "Learning Curve"

3 Samples so Far in 2014 Number of Labs Participating

		Poultry Feed Swine Feed		Cattle Feed	
Code	Analyte (ppb)	201461 (23 Labs)	201462 (25 Labs)	201463 (26 Labs)	
600	Total Aflatoxin	17	17 20		
601	AB1	8	11	7	
602	AB2	8	10	7	
603	AG1	7	11	7	
604	AG2	7	9	7	
610	Deoxynivalenol	17	20	10	
620	Total Fumonisin	13	13	14	
621	FB1	8	5	6	
622	FB2	8	5	6	
623	FB3	3	2	3	
630	Ochratoxin A	9	13	15	
640	T-2	8	9	9	
650	Zearalenone	14	16	18	

3 Samples so Far in 2014 Assigned Values (Reference Lab)

		Poultry Feed	Swine Feed	Cattle Feed	
Code	Analyte (ppb)	201461 (23 Labs)	201462 (25 Labs)	201463 (26 Labs)	
600	Total Aflatoxin	20.1	21.5	42.6	
601	AB1	18.5	20.0	40.2	
602	AB2	1.6	1.5	1.7	
603	AG1	ND (0.5)	ND (0.5)	0.7	
604	AG2	ND (0.5)	ND (0.5)	ND (0.5)	
610	Deoxynivalenol	1,200	830	2,700	
620	Total Fumonisin	1,900	2,100	1,800	
621	FB1	1,300	1,500	1,400	
622	FB2	400	400	270	
623	FB3	200	200	140	
630	Ochratoxin A	44.0	85.7	188.9	
640	T-2	236.8	46.9	244.6	
650	Zearalenone	242.3	183.9	250.6	

Tracking Z Scores:

Reference Lab vs Participant Consensus

Measure of Location X_A

$$Z = \frac{X_{LAB} - X_{A}}{\sigma_{ffp}}$$

 $\begin{array}{l} \text{Horwitz Used as the} \\ \text{Measure of Dispersion} \\ \sigma_{\text{ffp}} \text{ in Both Cases} \end{array}$

Sample 201461 (218 Detects)					
	Reference	Consensus			
Compliant Z	68.8%	67.9%			
Warning Z	12.4%	12.8%			
Actionable Z	18.8%	19.3%			
Sample 201462 (237 Detects)					
	Reference	Consensus			
Compliant Z	69.6%	72.6%			
Warning Z	13.5%	13.1%			
Actionable Z	16.9%	14.3%			
Sample 201463 (252 Detects)					
	Reference	Consensus			
Compliant Z	55.2%	5.2% 68.7%			
Warning Z	17.1%	10.3%			
Actionable Z	27.8%	21.0%			

Sample 201463 Cattle Feed

Detail Tracking Z Scores For The Mycotoxins: Reference Lab vs Participant Consensus, Measure of Location

		Participant Consensus		Reference Lab					
	Detects	Value	Compliant	Warning	Actionable	Value	Compliant	Warning	Actionable
Total Aflatoxin	46	36	91.3%	4.3%	4.3%	43	89.1%	8.7%	2.2%
AB1	14	34	85.7%	0.0%	14.3%	40	85.7%	0.0%	14.3%
AB2	12	1.9	83.3%	16.7%	0.0%	1.7	75.0%	16.7%	8.3%
AG1	2		100.0%	0.0%	0.0%	1	100.0%	0.0%	0.0%
AG2	0					ND (0.5)			
Deoxynivalenol	44	2,114	56.8%	9.1%	34.1%	2,700	52.3%	13.6%	34.1%
Total Fumonisin	28	2,428	60.7%	10.7%	28.6%	1,800	32.1%	10.7%	57.1%
FB1	12	1,860	75.0%	16.7%	8.3%	1,400	66.7%	0.0%	33.3%
FB2	12	560	83.3%	16.7%	0.0%	270	0.0%	33.3%	66.7%
FB3	6	279	83.3%	16.7%	0.0%	140	33.3%	0.0%	66.7%
Ochratoxin A	30	162	53.3%	13.3%	33.3%	189	46.7%	23.3%	30.0%
T-2	14	161	42.9%	14.3%	42.9%	245	28.6%	28.6%	42.9%
Zearalenone	32	216	59.4%	12.5%	28.1%	251	46.9%	40.6%	12.5%

Let's Look at Some Data Distribution Charts For Sample 201463, Cattle Feed

Reference Lab vs Participant Consensus Compare Measure of Location Relative to Data Detects

Now the Question is:

"What do we want our Z Score to tell us?"

- 1. Should we be assessed against a single Reference Lab Assigned Value?
- 2. Should we be assessed against our best estimate of the center of all the data?

Revised Mycotoxin Proposal

Recommendations

- Use Robust Consensus to Calculate Z Scores.
- Where There is Minimal Data, Use Reference Lab to Calculate Z Scores.
- Continue to Collect Reference Lab Homogeneity Data.
- \triangleright Continue to Use Horwitz Relationship to Estimate σ_p (fit for purpose).
- Continue to Calculate Probability of Detection for Non Detects.

"It was a new day yesterday but it's an old day now."

2014 Mycotoxin CSP Ochratoxin Methods (Bias?)

2014 Mycotoxin CSP Analyte Report Ordered by Z Score

Revised Mycotoxin Proposal

Recommendations

- Use Robust Consensus to Calculate Z Scores.
- Where There is Minimal Data Use Reference Lab to Calculate Z Scores.
- Continue to Collect Reference Lab Homogeneity Data.
- \triangleright Continue to Use Horwitz Relationship to Estimate σ_p (fit for purpose).
- Continue to Calculate Probability of Detection for Non Detects.
- Include Analyte Report in the Data Reporting Website

Comments?

Dog Food # 201464

- Ship Date ~ 12/20/2014
- Data Due 01/10/2015
- Reports Available 01/31/2015

